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Abstract—The aim of signal decomposition in wavelet bases
is to represent a signal as a sequence of wavelet coefficients
sets. There is proposed a multistage classification rule using
on every stage only one set of the signal coefficients. The
hierarchical construction of wavelet multiresolution analysis was
an inspiration for the multistage classification rule. The algorithm
makes an optimal decision for every set of coefficients and its
main advantage is a smaller dimension of classification problem
on every stage.

Index Terms—multistage classification, wavelet decomposition,
multiscale representation

I. INTRODUCTION

T
HE aim of this article is to present the multistage clas-

sification rule for signals decomposed in wavelet bases.

The compactness of wavelet functions support for Daubechies

wavelets is used to reduce the amount of wavelet coefficients in

signal approximation to a finite number. The classification rule

makes a decision basing on one set of wavelet coefficients on

every stage, corresponding to the actual scale of decomposition

of the signal. The algorithm chooses on every stage a subset of

classes (macro-class), where the signal came from. The rest of

classes is rejected and would not take part in the next step of

classification. The algorithm can make mistakes and classifies

a signal not to its original class, but to one of the other classes.

We measure the error with the risk value.

II. MULTISCALE WAVELET SIGNAL REPRESENTATION

According to the multiresolution analysis, the Hilbert space of

square integrable signals L2 (R) (signals with finite energy)

can be presented as an infinite simple sum of approximation

subspace VM and detail subspaces Wm, m =M, M+1, . . . ,
i.e.

L2 (R) = VM

∞⊕

m=M

Wm. (1)

The approximation of signal s (t; K) ∈ VK ⊂ L2 (R)
according to the multiresolution analysis can be represented

in

VK = VM

K−1⊕

m=M

Wm (2)

as a sum of representations in subspaces VM and Wm, m =
M, M + 1, . . . , K − 1.

Let φ (t) be a scaling function and ψ (t) mother wavelet.

Both functions should be square integrable, have compact

support and fulfill additional conditions
∫

R

φ (t) dt = 1 (3)

and ∫

R

ψ (t) dt = 0. (4)

The subspaces Vm and Wm have orthonormal bases of

scaled and translated in time wavelet functions. We can

then denote Vm = span{φmn (t) , n ∈ Z} and Wm =
span{ψmn (t) , n ∈ Z}, where φmn (t) = 2m/2φ (2mt− n) ,
ψmn (t) = 2m/2ψ (2mt− n) . The notation of a signal ap-

proximation in subspace VK can be presented as follows

s (t; K) =
∑

n1∈Z

αMn1φMn1 (t)

︸ ︷︷ ︸
∈VM

+
∑

n2∈Z

βMn2
ψMn2

(t)

︸ ︷︷ ︸
∈WM

+
∑

n3∈Z

βM+1,n3ψM+1,n3 (t)

︸ ︷︷ ︸
∈WM+1

(5)

+ · · ·+
∑

nN∈Z

βK−1,nN
ψK−1,nN

(t)

︸ ︷︷ ︸
∈WK−1

,

where coefficients αmn and βmn are given by the formulas

αmn =

∫

R

s (t)φmn (t) dt (6)

and

βmn =

∫

R

s (t)ψmn (t) dt. (7)

A. Compact support of Daubechies wavelets

Daubechies wavelets [1] have special properties, especially

useful in applications. We can find in [4] widely described

attributes of Daubechies wavelets of order p:

1) Daubechies wavelet of order p has compact support with

length r = 2p − 1. The length r is of course an odd

number. Scaling function φ for Daubechies wavelet of
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order p will be denoted by Dp, while mother-wavelet ψ
by dp. The support of scaling function is

supp{Dp (t)} = [0, r] = [0, 2p− 1] ,

and the support of mother-wavelet

supp{dp (t)} =

[
−
r − 1

2
,
r + 1

2

]
= [−p+ 1, p] .

2) The basis functions {Dmn (t)} and {dmn (t)} consist on

an orthonormal set for each scale m. Their support has

length equal to r
2m and takes the following form

supp{Dmn (t)} =

[
n

2m
,
r + n

2m

]
,

supp{dmn (t)} =

[
n

2m
−

(r − 1)

2m+1
,
n

2m
+

(r + 1)

2m+1

]
.

With the increase of scale (and resolution), the basis

wavelets become narrower due to the shortening of the

support and higher due to the increase in amplitude.

B. Model decomposed by Daubechies wavelets

Considering properties of Daubechies wavelets, and especially

the compactness of their support, we can transform an approx-

imation of signal given by (5) into the form where a finite

number of elements will be summed

s (t; K) =

nmax(D
p,b,M)∑

n=nmin(Dp,a,M)

αMnD
p
Mn (t) (8)

+

K−1∑

m=M

nmax(d
p,b,m)∑

n=nmin(dp,a,m)

βmnd
p
mn (t) .

The limits in sums depends on the time interval [a, b] of signal

approximation

nmin (D
p, a, M) = ⌈2Ma− r⌉,

nmax (D
p, b, M) = ⌊2Mb⌋, (9)

nmin (d
p, a, m) = ⌈2ma−

r − 1

2
⌉,

nmax (d
p, b, m) = ⌊2mb+

r + 1

2
⌋,

and coefficients αMn and βmn are given now by equations

αMn =

∫ (r+n)/2M

n/2M
s (t)Dp

Mn (t) dt, (10)

βmn =

∫ (n+ (r+1)
2 )/2m

(n− (r−1)
2 )/2m

s (t) dpmn (t) dt. (11)

Such a model has a finite number of coefficients

{αMn, βmn, m = M, M + 1, . . . , K − 1}, which clearly

represent a signal in the approximation subspace VK with a

fixed scale K. This observation is widely used by compu-

tational algorithms with wavelet signal representation, and it

will be applied to construct a multistage classification rule

(recognition algorithm) for signals.

III. MULTISTAGE CLASSIFICATION

A. Problem statement

Let there be n disjoint classes i ∈ {1, 2, . . . , n} = M.

There should be also known complete information about the a

priori probability of occurrence pi and the probability density

function fi(x) of random features x, for each class i:

class: 1 2 ... n

p1 p2 ... pn
f1(x) f2(x) ... fn(x)

The problem is to find a rule classifying an analyzed signal

to one of the classes basing on a set of features x. In statistical

classification problem, the true, original class j of the signal is

realization of a discrete random variable J, while the vector of

features x is the realization of a continuous random variable

X. A priori probability of occurrence of the classes j ∈ M
is a positive probability of coming the signal from the class

j before collecting of any features x ∈ X , i.e. before the

experiment:

pj = P (J = j) > 0. (12)

Further, we assume that the signal can be characterized by

a vector of N numerical features x ∈ X ⊆ RN , and the

probability density of the features x in classes j ∈ M does

exist and is known. This is a conditional probability density

fj (x)
df
= f (x | j) in class j ∈M, i.e. the probability density

of features x under the assumption that the signal comes

exactly from this class.

B. Classification tree

The classification rule characterizes the gradual use of

the individual components x(m) of signal representation

x = (x(1), x(2), . . . , x(N))T in successive stages m =
1, 2, . . . , N, (decomposition of the signal) and joining the

terminal classes in the transitional macro-classes (aggregation

of classes). This leads to a reduction of the dimension of

signal representation and reduces the number of classes on

particular stages. Macro-classes are the subsets of the classes

identified with the internal nodes of the decision tree structure

established in advance. Each macro-class is a collection of

terminal classes accessible from the node associated with it.

The set of terminal classes for each macro-class is divided

into disjoint subsets that define its child macro-classes (direct

successors). In Figure 1 we present a tree for two-stage pattern

recognition algorithm and four classes.

We will use the following denotations

Mi - a collection of macro-classes that are direct pre-

decessors of macro-class (node) i; (Mi0 means

the set of macro-classes that are direct predeces-

sors of root M = {1, 2, . . . , n});
Mim−1 - a collection of macro-classes that are direct

predecessors of node im−1 (indicated by the

algorithm Ψm−1 for stage m = 2, . . . , N ).

And then

Mi - a set of classes (terminal nodes) achievable from

macro-class (node) i; (Mi0 means the set of all
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classes, i.e. the set of all terminal nodes, Mi0 =
M);

Mim−1
- a set of classes (terminal nodes) accessible from

the node im−1 (indicated by the algorithm Ψm−1

for stage m = 2, . . . , N ).

The conditional a priori probability for the specified schema

of the decision tree, (the a priori probability of macro-class

jm ∈ Mim−1 appearance on the stage m, provided that

in the previous stage m − 1 macro-class im−1 ∈ M
im−2

was accepted), can be determined from the Bayes’ formula of

conditional probability as follows

p
(m)
jm

=
P(J ∈Mjm |Mim−1

)

P(Mim−1
)

(13)

=

∑
j∈Mjm

pj

∑
i∈Mim−1

pi
,

where pj is an a priori probability of class j ∈ M appear-

ance for one-stage classification rule Ψm (see (21)). On the

condition that there has happened j ∈ im−1 ∈M
im−2 , the a

priori conditional probability of class j ∈ M appearance on

the stage m is

p
(m)
j =

pj∑
i∈Mim−1

pi
. (14)

It is important that choosing a node im−1 by algorithm Ψm−1

the other branches of decision tree become inactive (compare

with another approach in [5]). There are cut off the paths

leading to these terminal classes j ∈M that are not accessible

from the node im−1 (i.e. j /∈Mim−1
). Then the conditional

probability for the relevant classes has zero value

p
(m)
j = 0 for j ∈M\Mim−1

. (15)

In the construction of a multistage algorithm ΨW =
(Ψ1, Ψ2, . . . , ΨN ) we use the conditional probability density

function of features x ∈ X from macro-class jm in the

following form

fjm(x)
df
= f(x | jm) =

1

p
(m)
jm

∑

j∈Mjm

p
(m)
j fj(x). (16)

The boundary distribution of feature x(m) ∈ X (m), used

for classification on mth stage, is given by the following

probability density function

f (m)(x(m)) (17)

=

∫

X (m),C

f(x) d(x(1) . . . x(m−1)x(m+1) . . . x(N)),

where

X (m),C = X (1) × . . .×X (m−1) ×X (m+1) × . . .×X (N),

and the probability density function is

f (x) =
∑

j∈M

pj fj (x) , x ∈ X . (18)

The conditional probability density function for feature x(m) ∈
X (m) (coming from the macro-class jm) on mth stage of

classification is then equal to the corresponding mixture of

boundary density functions. Based on the formulas (16) and

(17) we obtain

f
(m)
jm

(x(m))
df
= f (m)(x(m) | jm) (19)

=
1

p
(m)
jm

∑

j∈Mjm

p
(m)
j f (m)(x(m) | j).

C. Classification rule

Definition 1: [Multistage classification rule] The N -stage

classification rule (algorithm)

ΨW : X −→Mi0 ×Mi1 × · · · ×MiN

classifies signal basing on the features x ∈ X to the terminal

class iN in the following way

ΨW (x) = (Ψ1(x
(1)), Ψ2(x

(2)), . . . , ΨN (x(N)))

= (i1, i2, . . . , iN ). (20)

This classification rule is a sequence of N one-stage algo-

rithms (Ψ1, Ψ2, . . . , ΨN ) such as

Ψm : X (m) −→Mim−1 .

The one-stage classification rule definition is as follows

Definition 2: [One-stage classification rule] For zero-one

loss functions (24) algorithm Ψm classifies the signal to

macro-class im ∈Mim−1 :

Ψm(x(m)) = im ∈Mim−1 , (21)

when

p
(m)
im

f
(m)
im

(x(m)) = max
km∈M

im−1

p
(m)
km

fkm
(x(m)).

Such a construction of the multistage algorithm ΨW =
(Ψ1, Ψ2, . . . , ΨN ) we will call locally optimal because at

every stage of the classification the one-stage algorithm Ψm

is optimal and minimizes the risk. In addition, the usage

of zero-one loss functions results in maximization of the a

posteriori probability of correct classification of the signal

to a macro-class achievable from the node im−1 on mth

stage, for m = 1, 2, . . . , N. The multistage classification rule

ΨW = (Ψ1, Ψ2, . . . , ΨN ) for decomposed by wavelets signal

is following. The rule ΨW classifies signal to the one terminal

class basing on the vector of features

x = (αM , βM , . . . , βK−1)
T , (22)

where vector components consist of wavelet coefficient se-
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quences for signal decomposed in the wavelet basis

s (ω, t; K) =
∑

n1∈Z

αMn1 (ω) D
p
Mn1

(t)

︸ ︷︷ ︸
∈VM

(23)

+
∑

n2∈Z

βMn2
(ω) dpMn2

(t)

︸ ︷︷ ︸
∈WM

+
∑

n3∈Z

βM+1,n3
(ω) dpM+1,n3

(t)

︸ ︷︷ ︸
∈WM+1

+ · · ·+
∑

nN∈Z

βK−1,nN
(ω) dpK−1,nN

(t)

︸ ︷︷ ︸
∈WK−1

,

In (23) we introduced ω (an elementary event) as an addi-

tional argument to emphasize random nature of components.

We assume the usage of Daubechies wavelets to the signal

decomposition for N = K −M + 1 components and scales

m = M, M + 1, . . . ,K − 1. The components of vector x
consist of





x(1) = αM
df
= {αMn1

(ω)},

x(2) = βM
df
= {βMn2

(ω)},
...

x(N) = βK−1
df
= {βK−1,nN

(ω)}

where limits of indexes are defined by (9)

nmin(D
p, a, M) ≤ n1 ≤ nmax(D

p, b, M),

nmin(d
p, a, M) ≤ n2 ≤ nmax(d

p, b, M),

...

nmin(d
p, a, K − 1) ≤ nN ≤ nmax(d

p, b, K − 1).

The numbers of wavelet coefficients (the length of wavelet

coefficient sequences), counted for the following scales

M, M + 1, . . . , K − 1, are different. The number of stages

ΨW=(Ψ1, Ψ2, . . . , ΨN ) depends on the number of wavelet

coefficient sequences, to which the signal will be decomposed.

Definition 3: [Multistage classification algorithm] The

classification of signal goes in N = K−M +1 stages. There

is presented the implementation of the classification rule for

signal representation x = (αM , βM , . . . , βK−1)
T obtained

by wavelet decomposition of signal:

Stage 1: The rule Ψ1 classifies analyzed signal representa-

tion x to macro-class (node) i1 from the set of the

direct successors of root Mi0 based on sequence

αM ∈ Rd1 :

Ψ1 : Rd1 −→Mi0 ,

Ψ1(αM ) = i1,

αM ∈ R
d1 , i1 ∈M

i0 .

Stage 2: The rule Ψ2 classifies analyzed signal representa-

tion x to macro-class (node) i2 from the set Mi1

of the direct successors of the node i1 based on

sequence βM ∈ Rd2 :

Ψ2 : Rd2 −→Mi1 ,

Ψ2(βM ) = i2,

βM ∈ R
d2 , i2 ∈M

i1 .

...

Stage m: The rule Ψm classifies analyzed signal represen-

tation x to macro-class (node) im from the set

Mim−1 of the direct successors of the node im−1

based on sequence βM+m−2 ∈ Rdm :

Ψm : Rdm −→Mim−1 ,

Ψm(βm+M−2) = im,

βm+M−2 ∈ R
dm , im ∈Mim−1 .

...

Stage N : The rule ΨN classifies analyzed signal represen-

tation x to a class (terminal node) iN from the

set MiN−1 ⊂ M of the direct successors of the

node iN−1 based on sequence βK−1 ∈ RdN :

ΨN : RdN −→MiN−1 ,

ΨN (βK−1) = iN ,

βK−1 ∈ R
dN , iN ∈M

iN−1 .

The last stage of signal classification ends with

choosing the terminal class, i.e. indicating the

particular class i = iN , to which finally the

representation of signal x is assigned.

D. Classification accuracy

The measure of classification accuracy is a risk of false

classification. Let us define the zero-one loss function for each

stage m with following formula

Lm(im, jm) =

{
0, when im ∩ jm 6= ∅,

1, when im ∩ jm = ∅.
(24)

It should be emphasized that with such a definition (24), the

arguments of zero-loss function are the macro-classes im and

jm, which are direct successors of node im−1, i.e.

Lm : Mim−1 ×Mim−1 −→ {0, 1}.

Theorem 1: [Risk of one-stage classification] The risk of

classification rule Ψm in node im−1 for zero-one loss function

Lm(im, jm) is

R[Ψm] = EX(m),J(m)

[
Lm

(
Ψm

(
X

(m)
)
, J(m)

)]
(25)

=
∑

jm∈M
im−1

p
(m)
jm

∫

X (m)\Djm

x(m)

f
(m)
jm

(
x(m)

)
dx(m),

where for each macro-class im ∈ Mim−1 the decision area

has form Dim
x(m) = {x

(m) ∈ X (m) : Ψm(x(m)) = im}.
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The risk for zero-one loss function has the lowest

value. We assume for the multistage classification rule

ΨW=(Ψ1, Ψ2, . . . , ΨN ) the form of loss function

LW :
(
Mi0 × · · · ×MiN−1

)
×

(
Mi0 × · · · ×MiN−1

)

−→ {0,
1

N
,
2

N
, . . . , 1},

with the following formula

LW ((i1, . . . , iN ), (j1, . . . , jN )) (26)

=





0, when iN = jN ,
N−m+1

N , when im ∩ jm = ∅

and im−1 ∩ jm−1 6= ∅.

We assume a greater loss if the error is committed at an earlier

stage. It is important to construct the decision tree in right

way, i.e. to aggregate similar classes in macro-classes. The

construction of loss function (26) allows us to formulate the

following corollary.

Corollary 1: The loss (26) for N -stage algorithm ΨW is

equal to the average local loss (24) for the subsequent stages

of classification, i.e.

LW ((i1, . . . , iN ), (j1, . . . , jN )) =
1

N

N∑

m=1

Lm(im, jm).

The next corollary is the natural consequence of previous fact.

Corollary 2: The risk of a N -stage algorithm ΨW is

equal to the average local risk (25) for subsequent stages of

classification, i.e.

R[ΨW ] =
1

N

N∑

m=1

R[Ψm]. (27)

To sum up, we state the following theorem:

Theorem 2: [Multistage classification risk] For the

loss function (26) the risk of a N -stage algorithm

ΨW=(Ψ1, Ψ2, . . . , ΨN ) is

R[ΨW ] =
1

N

N∑

m=1

∑

j∈Mim−1

p
(m)
j

∫

Dj,C

x(m)

fj (x) dx (28)

=
∑

j∈M




1

N

N∑

m=1

p
(m)
j

∫

Dj,C

x(m)

fj (x) dx


 , (29)

where for each class j ∈ M the set Dj,C
x(m) = X (1) ×

. . . × X (m−1) × [X (m)\Dj
x(m) ] × X

(m+1) × . . . × X (N) is

a complement of decision area Dj
x(m) to the feature spaceX .

The decision areas

Dj
x(m) ={x

(m) ∈ X (m) : j ∈ Ψm(x(m))} = {x(m) ∈ X (m) :

p
(m)
im

f
(m)
im

(x(m)) = max
km∈M

im−1

p
(m)
km

fkm
(x(m))}

are equal for each class j ∈ Mim (achievable from a fixed

macro-class im on the mth stage).

IV. MULTISTAGE CLASSIFICATION OF ECG SIGNAL

The decomposed in wavelet bases ECG signals (electrocar-

diograms), from patients with previously diagnosed heart

disease by cardiologists, were examined to the multistage

classification algorithm. The main purpose of this experiment

was an illustration of the multistage classification rule. Then

the identified by the algorithm heart diseases were compared

with the diagnoses of doctors what allowed us to evaluate

the quality of the algorithm. The ECG signals s(t, K) were

decomposed into two sequences of wavelet coefficients, i.e.

x = (αK−1, βK−1)
T . After decomposition, we reduce the

number of wavelet coefficients (d = 51) by thresholding to

the length d = 2, 3, 4 and 5. There was presented two-stage

classification rule ΨW=(Ψ1, Ψ2) and the accuracy for this

rule was estimated.

First, based on the data of Eurostat [2] two macro-classes

were chosen: {1, 2} ischemic heart diseases, {3, 4} cardiac

arrhythmias, and there were calculated an a priori probabilities

for them. ECG signals used in the experiment come from the

database PhysioNet [3] and were divided into four classes,

corresponding to a different heart diseases:

1) European ST-T Database [6] - 48 signals (class 1)

2) MIT-BIH ST Change Database - 28 signals (class 2)

3) MIT-BIH Arrhythmia Database - 48 signals (class 3)

4) MIT-BIH Supraventricular Arrhythmia Database - 78

signals (class 4)

Basing on the size of databases we calculated the relative

frequencies of terminal classes (compare to (14))

1) p̂1 = 48
202 = 0, 238 for class 1,

2) p̂2 = 28
202 = 0, 139 for class 2,

3) p̂3 = 48
202 = 0, 238 for class 3,

4) p̂4 = 78
202 = 0, 386 for class 4.

We estimated the a priori probabilities of occurrence of macro-

classes {1, 2}, {3, 4} (compare to (13)):

• p̂
(1)
{1,2} = 0, 38 for ischemic heart disease,

• p̂
(1)
{3,4} = 0, 62 for cardiac arrhythmias.

Each macro-class consists of two classes. It is presented on

scheme in Figure 1.

Figure 1. The binary decision tree diagram for the two-stage classification
rule with 2 macro-classes and 4 terminal classes.

ECG signals in each class of heart disease were divided

into two subsets: learning and testing. Using the electrocar-

diograms from the first group (a collection of 101 learning

signals) we estimated the probability density function in each

class. Then we examined the quality of the algorithm by

comparing the results of classification algorithm for the rest

electrocardiograms (101 testing signals, not involved in the

learning algorithm) with diagnoses of cardiologists.
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A. Learning of classification algorithm

The following two steps were taken:

1) The hypothesis that the wavelet coefficient sequences

become from the normal probability distribution has

been verified. It was rejected by the Shapiro-Wilk and

Lilliefors tests at the 5% significance level. It is the cause

why we estimated density functions with nonparametric

kernel estimators.

2) We used two types of kernel estimators: a histogram

and a Rosenblatt-Parzen estimator with the triangular

kernel. The kernel functions: uniform and triangular

have support with a finite length, so the usage of them

reduces the computational complexity of the estimation.

There were estimated the density functions for classes

and macro-classes by analogy to (19). In Figure 2 we

show the example of estimated density function.

Figure 2. The estimation of density function f̂ (1)
(
x(1) | 4

)
for class 4

calculated by the usage of triangular kernel estimator, basing on approximation
coefficients {α1

Mn
}dn=1, {α

2
Mn

}dn=1, . . . , {α
101
Mn

}dn=1 thresholded on the
level λh1 = 6.0 (the length of sequence is d = 2).

B. Testing of classification algorithm

To estimate the risk of false diagnosis, we counted the dif-

ferences between classification and medical diagnosis for all

signals from testing set. Experimental risk was determined

from the dependence

R̂[ΨW,d] =

∑n
i=1(1− 1jN (i){iN (i)})

n
, (30)

where

n - the number of test ECG signals (here n = 101),

jN (i) - diagnosed by cardiologists class of heart disease

for ith signal from testing set, i = 1, 2, . . . , n,

iN (i) - the selected terminal class as the result of classifi-

cation algorithm ΨW,d,

d - the size of the wavelet coefficient sequence after

thresholding (dimension of problem).

The results are presented in Figure 3. The lowest value of

experimental risk was gained for the length of coefficient

sequences d = 3.

Figure 3. The experimental risk value for the multistage classification rule
ΨW,d depending on the length d of the coefficient sequences (dimension of
problem).

V. FINAL REMARKS

Generally, in real applications we do not know the probability

distributions for signal features in particular, individual classes.

It was the reason for development of an empirical classification

rule based on the learning signals, in addition to the theoretical

classification algorithm. Frequency of correct classification has

been established on the basis of testing signals, that consist

of wavelet coefficients extracted from the ECG signals for

patients who had the diagnosed heart disease. Experimental

classification of ECG signals, pointed out some problems

in the practical realization of classification, such as proper

selection of features and the need for choosing an appropriate

method for estimating probability distributions for features in

classes.

The combination of multiscale representation of signal in

wavelet bases with a multistage classification rule may lead to

the high accuracy with simultaneous reducing the dimension of

the problem (the amount of signal representation coefficients

in approximation subspace Vm or detail subspace Wm) on

each stage of classification.
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