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Abstract

The main aim of this paper is to show applications of a wavelet transform for an automatic

signal classi�cation and de-noising. We show that the wavelet decomposition of signal can

be used for two applications. The �rst one, de-noising, allows to separate noise from the

signal and to remove it before executing the recognition algorithm. The second approach,

called multistage recognition, decomposes signal in wavelet bases, preparing it to a sequential

recognition in many stages. We describe the characteristics of the presented methods and

we discuss shortly their advantages and disadvantages.

1. INTRODUCTION

We consider a problem of signal classi�cation to one of m classes. It means we
assume the existence of m di�erent generic patterns f1(t), f2(t), . . . , fm(t), for each
class. In a �xed class with a pattern f(t), the form of a signal disturbed by Gaussian
noise is as follows

s(ti) = f(ti) + σZi, (1.1)

where ti = i
p0
, for i = 0, 1, . . . , p0 − 1 are time samples and {Zi} are independent

and identically distributed Gaussian random variables, Zi ∼ N (0; 1). The example
of generic patterns and noisy signals is shown in Figure 1.
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Figure 1: Generic patterns and noisy signals. Three classes of signals.

2. WAVELET TRANSFORM

2.1. Multiresolution signal representation

The multiresolution analysis of the space L2(R) is a sequence of approximation
subspaces Vm, ful�lling the inclusion condition Vm ⊂ Vm+1 ⊂ · · · ⊂ L2(R). Every
approximation space Vm+1 can be presented as a simple sum of an approximation
space Vm and a detail space Wm for smaller scale m, what gives a notation

VK = VM

K−1⊕
m=M

Wm. (2.1)

We assume that φ (t) is a scaling function and ψ (t) is a proper mother wavelet. Let
φmn (t) = 2m/2φ (2mt− n) be the basic function of approximation space Vm and
ψmn (t) = 2m/2ψ (2mt− n) be the basic function of detail space Wm for scale m
[3].The signal approximation s (t; K) for scale K has the form

s (t) ≈ s (t; K) =
∑
n

αMnφMn (t) +

K−1∑
m=M

∑
n

βmnψmn (t) (2.2)

where wavelet coe�cients αMn and βmn are given by the formulas αMn =
∫
R s (t)φMn (t) dt

and βmn =
∫
R s (t)ψmn (t) dt. A number n is a translation in time of wavelet functions.
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Noisy signal (1.1) transformed by wavelet �ltration to time-frequency domain is
represented by the sequence of wavelet coe�cients

W (s(t)) = (αM , βM , βM+1, . . . , βK−1) = x, (2.3)

where αM = (αMn)n - sequence of wavelet approximation coe�cients for coarse scale
M , βm = (βmn)n - sequence of wavelet detail coe�cients for scale m = M, M +
1, . . . , K − 1.

2.2. Mallat's algorithm

Described in previous section, a decomposition (2.1) of an approximation space
VK was used by Mallat [7] in an algorithm construction. The algorithm calculates the
coe�cients of signal approximation s (t; m) from space Vm in bases of subspaces Vm−1
and Wm−1. The Mallat's algorithm recursively decomposes signal s (t; m) ∈ Vm for
m = K, K−1, . . . ,M +1 to approximation and detail components with the low-pass
and high-pass �lters, respectively. Basing on approximation coe�cients {αmn}, we
compute coe�cients {αm−1,n} and {βm−1,n} in the following way

αm−1,n =
∑
t

htαm,t+2n and βm−1,n =
∑
t

gtαm,t+2n, (2.4)

where {ht} is a low-pass �lter, and {gt} = {(−1)th−t+1} � a complementary high-pass
�lter. The exemplary low-pass �lters [3] are

• Haar �lter: h0 = 1√
2
, h1 = 1√

2
,

• Daubechies of order 2 �lter: h0 = 1+
√
3

4
√
2
, h1 = 3+

√
3

4
√
2
, h2 = 3−

√
3

4
√
2
, h3 = 1−

√
3

4
√
2
.

As a result of the �ltration, the approximation and the detail coe�cients for the less
accurate scale m− 1 are down-sampled.

The block diagram of wavelet decomposition proposed by Mallat [7] is in Figure 2.

Figure 2: Block diagram of wavelet decomposition - Mallat's algorithm. Source: [5].
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3. WAVELET DE-NOISING

The decomposition of signal in wavelet bases was used by Donoho and Johnstone
for de-noising purposes. They proposed [1, 2] the soft thresholding of wavelet coe�-
cients x of the vector x (see (2.2) and (2.3))

Ts(x, λ) =


(|x| − λ), x ≥ λ
0, |x| < λ

−(|x| − λ), x ≤ −λ
(3.1)

with the so called universal threshold,

λ = σ̂
√

2log(p0), (3.2)

where σ̂ = MAD/0.6745. MAD is median absolute value of normalized wavelet
coe�cients. The threshold λ is independent from wavelet decomposition level and
this is the reason why it got the universal name. Donoho and Johnstone proved
asymptotic optimality of VisuShrink estimator f̂ = (W−1 ◦ Ts ◦ W )(si) in mean
square error sense. The estimator f̂ is reconstruction of signal f from noisy data
si = f(ti)+σZi. It was shown that the VisuShrink [2] reconstruction f̂ reduces noise
and improves visual quality of images.

Figure 3: Noisy and de-noised signal. Wavelet decomposition performed with the use
of 'db2' Daubechies wavelets of order 2.



Applications of Wavelet Transform in Signal Recognition and De-noising

4. MULTISTAGE SIGNAL RECOGNITION

The second application of wavelet decomposition of signal is its recognition in a
sequential mode. It means we use only one sequence of wavelet coe�cients on every
stage. The wavelet sequences: αM , βM , βM+1, . . . , βK−1, (see (2.3)) represent an
analyzed signal unambiguously, as in the formula:

s (t; K) =
∑
n1∈Z

αMn1
φMn1

(t)︸ ︷︷ ︸
∈VM

+
∑
n2∈Z

βMn2
ψMn2

(t)︸ ︷︷ ︸
∈WM

(4.1)

+
∑
n3∈Z

βM+1,n3ψM+1,n3 (t)︸ ︷︷ ︸
∈WM+1

+ · · ·+
∑
nN∈Z

βK−1,nN
ψK−1,nN

(t)︸ ︷︷ ︸
∈WK−1

.

The main reason of the usage of the mentioned wavelet coe�cient sequences from
the decomposed representation is the lower number of coe�cients in each sequence:
αM , βM , βM+1, . . . , βK−1 then in the full representation by αK . For example, the
length of αK for Haar transform is 2K−M -times longer than the length of αM . The
wavelet decomposition causes a natural selection of signal coe�cients taken into con-
sideration by a classi�cation algorithm. If the coarse representation by αM is not
good enough (in a risk value sense) to make the �nal decision of classi�cation of the
signal to a class, the signal will be assigned to a macro-class (a set of similar classes).
On the next stage, the next sequence, i.e. βM , is considered and its purpose is to
precise the classi�cation result, what is shown in the Figure 4. The procedure can
be continued as long as we dispose with the sequences of wavelet detail coe�cients,
i.e. according to the form (4.1) on the last stage classi�er chooses a �nal class on the
basis of βK−1.

Figure 4: Decision tree with the transitional macro-classes (nodes: {1,2,3} and {1,2})
and the �nal classes (leaves: {1}, {2} and {3}).

The multistage recognition is a general schema and can be performed with every
one-stage classi�er (e.g. k−NN), as a building component of this complex procedure.
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5. CONCLUSIONS

Every signal s(t) may be represented by a sequence of wavelet coe�cients. There
are two processing we could exploit thanks to the representation of signal in wavelet
bases: 1) the signal de-noising and 2) the multistage recognition of signal.

The VisuShrink estimator f̂ of de-noised signal s(t) has very good visual proper-
ties, but it leaves more non-zero coe�cients than is necessary to execute recognition.
There are other methods, as proposed by Johnstone and Silverman [4] thresholding
WaveletShrink with threshold λm = σm

√
2log(p0) dependent on wavelet decomposi-

tion level m. But the future work is to �nd the threshold dedicated to classi�cation
problems, that selects proper coe�cients, so the misclassi�cation risk is minimized.

The multistage recognition of signal is a relatively fresh idea. An exemplary
multistage classi�cation of ECG signals can be found in [6]. It makes the complex
problem of signal recognition easier, because of the reduction of coe�cient vector
dimension. But it only postpones the usage of signal details to the following stages.
The only di�culty of the multistage approach is the opposite order of the coe�cient
sequences usage to the order they are produced by Mallat's algorithm. This forces
the earlier preparation of signal decomposition before classi�cation.
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