ZESZYTY NAUKOWE WYDZIALU ELEKTRONIKI,
TELEKOMUNIKACJI I INFORMATYKI POLITECHNIKI GDANSKIEJ

Nr 10 Seria:ICT Young 2012

APPLICATIONS OF WAVELET TRANSFORM
IN SIGNAL RECOGNITION AND DE-NOISING

Urszula Libal(1)

Wroclaw University of Technology,
Institute of Computer Engineering, Control and Robotics,
urszula.libal@pwr.wroc.pl(1)

Abstract

The main aim of this paper is to show applications of a wavelet transform for an automatic
signal classification and de-noising. We show that the wavelet decomposition of signal can
be used for two applications. The first one, de-noising, allows to separate noise from the
signal and to remove it before executing the recognition algorithm. The second approach,
called multistage recognition, decomposes signal in wavelet bases, preparing it to a sequential
recognition in many stages. We describe the characteristics of the presented methods and
we discuss shortly their advantages and disadvantages.

1. INTRODUCTION

We consider a problem of signal classification to one of m classes. It means we
assume the existence of m different generic patterns fi(t), f2(t),..., fm(t), for each
class. In a fixed class with a pattern f(¢), the form of a signal disturbed by Gaussian
noise is as follows

s(t) = f(t:) + 0 Z, (11)

where t; = pio, fori =0,1,..., pp — 1 are time samples and {Z;} are independent
and identically distributed Gaussian random variables, Z; ~ N(0; 1). The example
of generic patterns and noisy signals is shown in Figure 1.
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Figure 1: Generic patterns and noisy signals. Three classes of signals.

2. WAVELET TRANSFORM

2.1. Multiresolution signal representation

The multiresolution analysis of the space L?(R) is a sequence of approximation
subspaces V,,,, fulfilling the inclusion condition V,, C Vi1 C --- C L%(R). Every
approximation space V11 can be presented as a simple sum of an approximation
space V,,, and a detail space W,, for smaller scale m, what gives a notation

K-1

Vi =V @ Wi (2.1)
m=M

We assume that ¢ (t) is a scaling function and 1 (t) is a proper mother wavelet. Let
Gmn (1) = 2™/2¢ (2™t —n) be the basic function of approximation space V,, and
U (1) = 2™/22) (2™t —n) be the basic function of detail space W,, for scale m
[3].The signal approximation s (¢; K) for scale K has the form

m=M n

where wavelet coefﬁc1ents aprn and B, are given by the formulas apy, = fR t) darn () dt
and By, = f]R t) Ymn (t) dt. A number n is a translation in time of wavelet functions.
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Noisy signal (1.1) transformed by wavelet filtration to time-frequency domain is
represented by the sequence of wavelet coefficients

W(s(t)) = (am, By, Br+, -5 Br—1) = 1, (2.3)

where apr = (o )n - sequence of wavelet approximation coefficients for coarse scale
M, By = (Bmn)n - sequence of wavelet detail coefficients for scale m = M, M +
1., K—1.

2.2. Mallat’s algorithm

Described in previous section, a decomposition (2.1) of an approximation space
Vi was used by Mallat [7] in an algorithm construction. The algorithm calculates the
coefficients of signal approximation s (¢; m) from space V;, in bases of subspaces V,,,_1
and W,,_1. The Mallat’s algorithm recursively decomposes signal s (¢; m) € V,, for
m=K, K—1,...,M+1 to approximation and detail components with the low-pass
and high-pass filters, respectively. Basing on approximation coefficients {,, }, we
compute coefficients {a,,—1,,} and {Bp—1,»} in the following way

Am—1,n = Z htam,t+2n and Bmfl,n = E GtQm t4+2n, (24)
t t

where {h;} is a low-pass filter, and {g;} = {(—=1)'h_; 11} — a complementary high-pass
filter. The exemplary low-pass filters [3] are

e Haar filter: ho = %, hi = %,

o Daubechies of order 2 filter: hg = 1:\/‘?, hy = 3:\/;, ho = 34’\/‘/5, hs = 1*\/\§.

As a result of the filtration, the approximation and the detail coefficients for the less

accurate scale m — 1 are down-sampled.
The block diagram of wavelet decomposition proposed by Mallat [7] is in Figure 2.

{SK*LH} {Bﬂln}
12|

-
{Oﬁ\[n}

Figure 2: Block diagram of wavelet decomposition - Mallat’s algorithm. Source: [5].
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3. WAVELET DE-NOISING

The decomposition of signal in wavelet bases was used by Donoho and Johnstone
for de-noising purposes. They proposed [1, 2] the soft thresholding of wavelet coeffi-
cients = of the vector x (see (2.2) and (2.3))

(Jz[ =A),  z=A
Ts(xz, A) =<0, |z] < A (3.1)
—(lz] =X), < =X

with the so called universal threshold,

A =0+/2log(po), (3.2)

where 6 = MAD/0.6745. MAD is median absolute value of normalized wavelet
coefficients. The threshold ) is independent from wavelet decomposition level and
this is the reason why it got the wniversal name. Donoho and Johnstone proved
asymptotic optimality of VisuShrink estimator f = (W=t o T, 0o W)(s;) in mean
square error sense. The estimator f is reconstruction of signal f from noisy data
si = f(t;)+0Z;. It was shown that the VisuShrink [2] reconstruction f reduces noise
and improves visual quality of images.
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Figure 3: Noisy and de-noised signal. Wavelet decomposition performed with the use
of ’db2’ Daubechies wavelets of order 2.
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4. MULTISTAGE SIGNAL RECOGNITION

The second application of wavelet decomposition of signal is its recognition in a
sequential mode. It means we use only one sequence of wavelet coefficients on every
stage. The wavelet sequences: aar, Bar, Bar+1s - -+, Brx—1, (see (2.3)) represent an
analyzed signal unambiguously, as in the formula:

st E) = > anmbarn, )+ Y Brins¥ain, (t) (4.1)
n1€ZL no€Z
eV eWnm
+ Z BM+1,H3'IZ)M+1,H3 (t) +oeet Z 5K71,anK71,nN (t) .
n3€Z nN€E€”Z
EWnrt1 EWK -1

The main reason of the usage of the mentioned wavelet coefficient sequences from
the decomposed representation is the lower number of coefficients in each sequence:
anr, Ba, Barsi, - - -5 Br—1 then in the full representation by ag. For example, the
length of ax for Haar transform is 2% ~*-times longer than the length of a;. The
wavelet decomposition causes a natural selection of signal coefficients taken into con-
sideration by a classification algorithm. If the coarse representation by aj; is not
good enough (in a risk value sense) to make the final decision of classification of the
signal to a class, the signal will be assigned to a macro-class (a set of similar classes).
On the next stage, the next sequence, i.e. [js, is considered and its purpose is to
precise the classification result, what is shown in the Figure 4. The procedure can
be continued as long as we dispose with the sequences of wavelet detail coefficients,
i.e. according to the form (4.1) on the last stage classifier chooses a final class on the
basis of Sx_1.

{3}

Figure 4: Decision tree with the transitional macro-classes (nodes: {1,2,3} and {1,2})
and the final classes (leaves: {1}, {2} and {3}).

The multistage recognition is a general schema and can be performed with every
one-stage classifier (e.g. k—NN), as a building component of this complex procedure.
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5. CONCLUSIONS

Every signal s(t) may be represented by a sequence of wavelet coeflicients. There
are two processing we could exploit thanks to the representation of signal in wavelet
bases: 1) the signal de-noising and 2) the multistage recognition of signal.

The VisuShrink estimator f of de-noised signal s(t) has very good visual proper-
ties, but it leaves more non-zero coefficients than is necessary to execute recognition.
There are other methods, as proposed by Johnstone and Silverman [4] thresholding
WaveletShrink with threshold A, = 0.,,1/2log(po) dependent on wavelet decomposi-
tion level m. But the future work is to find the threshold dedicated to classification
problems, that selects proper coefficients, so the misclassification risk is minimized.

The multistage recognition of signal is a relatively fresh idea. An exemplary
multistage classification of ECG signals can be found in [6]. It makes the complex
problem of signal recognition easier, because of the reduction of coefficient vector
dimension. But it only postpones the usage of signal details to the following stages.
The only difficulty of the multistage approach is the opposite order of the coefficient
sequences usage to the order they are produced by Mallat’s algorithm. This forces
the earlier preparation of signal decomposition before classification.
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